Package index
-
create_multiOmicDataSet_from_dataframes() - Construct a multiOmicDataSet object from data frames
-
create_multiOmicDataSet_from_files() - Construct a multiOmicDataSet object from tsv files.
-
multiOmicDataSet() - multiOmicDataSet class
Main functions
See vignette('intro') for recommended usage
-
batch_correct_counts() - Perform batch correction
-
clean_raw_counts() - Clean Raw Counts
-
diff_counts() - Differential expression analysis
-
extract_counts() - Extract count data
-
filter_counts() - Filter low counts
-
normalize_counts() - Normalize counts
-
filter_diff() - Filter features from differential analysis based on statistical significance
-
plot_corr_heatmap() - Plot correlation heatmap
-
plot_expr_heatmap() - Plot expression heatmap
-
plot_histogram() - Plot histogram
-
plot_pca() - Perform and plot a Principal Components Analysis
-
plot_read_depth() - Plot read depth as a bar plot
-
plot_venn_diagram() - Plot a venn diagram, UpSet plot, or table of intersections
-
plot_volcano_enhanced() - Enhanced Volcano Plot
-
plot_volcano_summary() - Volcano Plot - Summary [CC Produces one volcano plot for each tested contrast in the input DEG table.
-
print_or_save_plot() - Print and/or save a ggplot
-
get_colors_lst() - Create named list of default colors for plotting
-
get_colors_vctr() - Get vector of colors for observations in one column of a data frame
-
set_color_pal() - Set color palette for a single group/column
-
calc_cpm() - Calculate counts-per-million (CPM) on raw counts in a multiOmicDataSet
-
calc_pca() - Perform principal components analysis
-
bind_dfs_long() - Bind dataframes in named list to long dataframe
-
join_dfs_wide() - Join dataframes in named list to wide dataframe
-
gene_counts - RSEM expected gene counts
-
nidap_batch_corrected_counts - Batch-corrected counts for the NIDAP test dataset.
-
nidap_batch_corrected_counts_2 - Batch-corrected counts for the NIDAP test dataset. The result of running
batch_correct_counts()onnidap_norm_counts.
-
nidap_clean_raw_counts - Clean raw counts for the NIDAP test dataset. The result of running
clean_raw_counts()onnidap_raw_counts.
-
nidap_deg_analysis - Differential gene expression analysis for the NIDAP test dataset.
-
nidap_deg_analysis_2 - Differential gene expression analysis for the NIDAP test dataset. The result of running
diff_counts()onnidap_filtered_counts.
-
nidap_deg_gene_list - List of differentially expressed genes from the NIDAP test dataset using default parameters with
filter_diff().
-
nidap_filtered_counts - Filtered counts for the NIDAP test dataset. The result of running
filter_counts()onnidap_clean_raw_counts.
-
nidap_norm_counts - Normalized counts for the NIDAP test dataset. The result of running
normalize_counts()onnidap_filtered_counts.
-
nidap_raw_counts - Raw counts for the NIDAP test dataset Pairs with
nidap_sample_metadata.
-
nidap_sample_metadata - Sample metadata for the NIDAP test dataset
-
nidap_venn_diagram_dat - Output data from venn diagram. The result of running
plot_venn_diagram()onnidap_volcano_summary_dat
-
nidap_volcano_summary_dat - Summarized differential expression analysis for input to venn diagram
-
options - MOSuite Options
-
plot_corr_heatmap_dat - Plot correlation heatmap for counts dataframe
-
plot_corr_heatmap_moo - Plot correlation heatmap for multiOmicDataSet
-
plot_expr_heatmap_dat - Plot expression heatmap for counts dataframe
-
plot_expr_heatmap_moo - Plot expression heatmap for multiOmicDataSet
-
plot_histogram_dat - Plot histogram for counts dataframe
-
plot_histogram_moo - Plot histogram for multiOmicDataSet
-
plot_pca_2d() - Perform and plot a 2D Principal Components Analysis
-
plot_pca_3d() - 3D PCA for counts dataframe
-
plot_pca_dat - Plot 2D or 3D PCA for counts dataframe
-
plot_pca_moo - Plot 2D or 3D PCA for multiOmicDataset
-
plot_read_depth_dat - Plot read depth for
data.frame
-
plot_read_depth_moo - Plot read depth for multiOmicDataSet