Plot 2D or 3D PCA for multiOmicDataset
Arguments
- moo_counts
 multiOmicDataSetcontainingcount_type&sub_count_typein the counts slot- count_type
 the type of counts to use. Must be a name in the counts slot (
names(moo@counts)).- sub_count_type
 used if
count_typeis a list in the counts slot: specify the sub count type within the list. Must be a name innames(moo@counts[[count_type]]).- principal_components
 vector with numbered principal components to plot. Use 2 for a 2D pca with ggplot, or 3 for a 3D pca with plotly. (Default:
c(1,2))- ...
 additional arguments forwarded to
plot_pca_2d()(if 2 PCs) orplot_pca_3d()(if 3 PCs).
See also
plot_pca generic
Other plotters for multiOmicDataSets:
plot_corr_heatmap_moo,
plot_expr_heatmap_moo,
plot_histogram_moo,
plot_read_depth_moo