Plot 2D or 3D PCA for multiOmicDataset
Arguments
- moo_counts
multiOmicDataSet
containingcount_type
&sub_count_type
in the counts slot- count_type
the type of counts to use. Must be a name in the counts slot (
names(moo@counts)
).- sub_count_type
used if
count_type
is a list in the counts slot: specify the sub count type within the list. Must be a name innames(moo@counts[[count_type]])
.- principal_components
vector with numbered principal components to plot. Use 2 for a 2D pca with ggplot, or 3 for a 3D pca with plotly. (Default:
c(1,2)
)- ...
additional arguments forwarded to
plot_pca_2d()
(if 2 PCs) orplot_pca_3d()
(if 3 PCs).
See also
plot_pca generic
Other plotters for multiOmicDataSets:
plot_corr_heatmap_moo
,
plot_expr_heatmap_moo
,
plot_histogram_moo
,
plot_read_depth_moo