Extract count data
Arguments
- moo
multiOmicDataSet containing
count_type
&sub_count_type
in the counts slot- count_type
the type of counts to use – must be a name in the counts slot (
moo@counts[[count_type]]
)- sub_count_type
if
count_type
is a list, specify the sub count type within the list (moo@counts[[count_type]][[sub_count_type]]
). (Default:NULL
)
Examples
moo <- multiOmicDataSet(
sample_metadata = as.data.frame(nidap_sample_metadata),
anno_dat = data.frame(),
counts_lst = list(
"raw" = as.data.frame(nidap_raw_counts),
"clean" = as.data.frame(nidap_clean_raw_counts),
"filt" = as.data.frame(nidap_filtered_counts),
"norm" = list(
"voom" = as.data.frame(nidap_norm_counts)
)
)
)
moo %>%
extract_counts("filt") %>%
head()
#> Gene A1 A2 A3 B1 B2 B3 C1 C2 C3
#> 1 0610007P14Rik 1049 950 934 1068 1140 947 1393 907 1427
#> 2 0610009B22Rik 283 590 615 241 383 608 299 186 696
#> 3 0610010F05Rik 352 678 1377 958 879 616 332 0 186
#> 4 0610011F06Rik 430 565 553 462 558 688 710 826 706
#> 5 0610012G03Rik 480 589 683 324 596 673 909 933 419
#> 6 0610037L13Rik 467 570 593 558 330 423 356 198 568
moo %>%
extract_counts("norm", "voom") %>%
head()
#> Gene A1 A2 A3 B1 B2 B3 C1
#> 1 0610007P14Rik 6.532994 6.192871 5.954869 6.375896 6.275880 6.119449 6.419913
#> 2 0610009B22Rik 4.484983 5.448875 5.286875 3.445612 4.451347 5.473886 3.500359
#> 3 0610010F05Rik 4.883688 5.668494 6.537590 6.216408 5.893089 5.498884 3.845207
#> 4 0610011F06Rik 5.199684 5.374085 5.112952 5.155558 5.163359 5.650929 5.441965
#> 5 0610012G03Rik 5.368118 5.445918 5.456511 4.567138 5.274928 5.625039 5.787457
#> 6 0610037L13Rik 5.327987 5.388747 5.233520 5.450169 3.656585 4.929386 4.274944
#> C2 C3
#> 1 6.172204 6.497050
#> 2 4.709254 5.471951
#> 3 2.685177 2.805426
#> 4 6.043492 5.490958
#> 5 6.214163 4.682896
#> 6 4.744405 5.173531