The first argument can be a multiOmicDataset
object (moo
) or a data.frame
containing counts.
For a moo
, choose which counts slot to use with count_type
& (optionally) sub_count_type
.
For a data.frame
, you must also set sample_metadata
.
All other arguments are optional.
Arguments
- moo_counts
counts dataframe or
multiOmicDataSet
containingcount_type
&sub_count_type
in the counts slot- ...
arguments forwarded to method plot_corr_heatmap_dat
Value
heatmap from ComplexHeatmap::Heatmap()
Methods
link to docs | class |
plot_corr_heatmap_moo | multiOmicDataSet |
plot_corr_heatmap_dat | data.frame |
Method Usage
# multiOmicDataSet
plot_corr_heatmap(moo_counts,
count_type,
sub_count_type = NULL,
...)
# dataframe
plot_corr_heatmap(moo_counts,
sample_metadata,
sample_id_colname = NULL,
feature_id_colname = NULL,
group_colname = "Group",
label_colname = "Label",
color_values = c(
"#5954d6", "#e1562c", "#b80058", "#00c6f8", "#d163e6", "#00a76c",
"#ff9287", "#008cf9", "#006e00", "#796880", "#FFA500", "#878500"
))
See also
Other plotters:
plot_expr_heatmap()
,
plot_histogram()
,
plot_pca()
,
plot_read_depth()
,
print_or_save_plot()
Other heatmaps:
plot_expr_heatmap()
,
plot_expr_heatmap_dat
Other moo methods:
batch_correct_counts()
,
clean_raw_counts()
,
filter_counts()
,
normalize_counts()
,
plot_expr_heatmap()
,
plot_histogram()
,
plot_pca()
,
plot_read_depth()
,
run_deseq2()
,
set_color_pal()
Examples
# plot correlation heatmap for a counts slot in a multiOmicDataset Object
moo <- multiOmicDataSet(
sample_metadata = as.data.frame(nidap_sample_metadata),
anno_dat = data.frame(),
counts_lst = list("raw" = as.data.frame(nidap_raw_counts))
)
p <- plot_corr_heatmap(moo, count_type = "raw")
# plot correlation heatmap for a counts dataframe
plot_corr_heatmap(
moo@counts$raw,
sample_metadata = moo@sample_meta,
sample_id_colname = "Sample",
feature_id_colname = "Gene",
group_colname = "Group",
label_colname = "Label"
)