
Construct a multiOmicDataSet object from text files (e.g. TSV, CSV).
Source:R/0_mo-class.R
create_multiOmicDataSet_from_files.RdConstruct a multiOmicDataSet object from text files (e.g. TSV, CSV).
Usage
create_multiOmicDataSet_from_files(
sample_meta_filepath,
feature_counts_filepath,
count_type = "raw",
sample_id_colname = NULL,
feature_id_colname = NULL,
delim = NULL,
...
)Arguments
- sample_meta_filepath
path to text file with sample IDs and metadata for differential analysis.
- feature_counts_filepath
path to text file of expected feature counts (e.g. gene counts from RSEM).
- count_type
type to assign the values of
counts_datto in thecountsslot- sample_id_colname
name of the column in
sample_metadatathat contains the sample IDs. (Default:NULL- first column in the sample metadata will be used.)- feature_id_colname
name of the column in
counts_datthat contains feature/gene IDs. (Default:NULL- first column in the count data will be used.)- delim
Delimiter used in the input files. Any delimiter accepted by
readr::read_delim()can be used. If the files are in CSV format, setdelim = ','; for TSV format, setdelim = '\t'.- ...
additional arguments forwarded to
readr::read_delim().
Value
multiOmicDataSet object
See also
Other moo constructors:
create_multiOmicDataSet_from_dataframes(),
multiOmicDataSet()
Examples
moo <- create_multiOmicDataSet_from_files(
sample_meta_filepath = system.file("extdata",
"sample_metadata.tsv.gz",
package = "MOSuite"
),
feature_counts_filepath = system.file("extdata",
"RSEM.genes.expected_count.all_samples.txt.gz",
package = "MOSuite"
),
delim = "\t"
)
#> Rows: 58929 Columns: 6
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: "\t"
#> chr (2): gene_id, GeneName
#> dbl (4): KO_S3, KO_S4, WT_S1, WT_S2
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> Rows: 4 Columns: 2
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: "\t"
#> chr (2): sample_id, condition
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
moo@counts$raw |> head()
#> # A tibble: 6 × 5
#> gene_id KO_S3 KO_S4 WT_S1 WT_S2
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 ENSG00000121410.11 0 0 0 0
#> 2 ENSG00000268895.5 0 0 0 0
#> 3 ENSG00000148584.15 0 0 0 0
#> 4 ENSG00000175899.14 0 0 0 0
#> 5 ENSG00000245105.3 0 0 0 0
#> 6 ENSG00000166535.20 0 0 0 0
moo@sample_meta
#> # A tibble: 4 × 2
#> sample_id condition
#> <chr> <chr>
#> 1 KO_S3 knockout
#> 2 KO_S4 knockout
#> 3 WT_S1 wildtype
#> 4 WT_S2 wildtype
moo_nidap <- create_multiOmicDataSet_from_files(
system.file("extdata", "nidap",
"Sample_Metadata_Bulk_RNA-seq_Training_Dataset_CCBR.csv.gz",
package = "MOSuite"
),
system.file("extdata", "nidap", "Raw_Counts.csv.gz", package = "MOSuite"),
delim = ","
)
#> Rows: 43280 Columns: 10
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr (1): GeneName
#> dbl (9): A1, A2, A3, B1, B2, B3, C1, C2, C3
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> Rows: 9 Columns: 5
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr (3): Sample, Group, Label
#> dbl (2): Replicate, Batch
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.