Skip to content

Resources

Reference Genomes

Name Species Common name Annotation Version
GRCh38 Homo sapiens Human Genome Reference Consortium Human Build 38
mm10 Mus musculus House mouse Genome Reference Consortium Mouse Build 38

Software

Data processing

Package name Version Usage Reference
R 3.6.1 Primary framework and programming language for data processing 1
Seurat 3.1.4 Primary program for processing single cell data 2, 3
Routliers 0.0.0.3 R package for identifying outliers via median absolute deviation 4, 5, 6
SCTransform Included in Seurat v3.1.4 Used for normalization. This replaces the ScaleData/Normalization from previous versions of Seurat 7
URD 1.1.0 Used to calculate optimal number of principal components through the Marchenko-Pastur law 8
UMAP 0.4.6 2D and 3D dimensionality reduction projection for visualizing cells and relative similarity 9, 10
SingleR 1.0.5 Cell type annotation based on correlation to cell types within curated databases 11, 12
DoubletFinder 2.0.2 Algorithm to determine likely doublets based on cell distribution and cell type similarity 13, 14

Visualization

Package name Version Usage Reference
ggplot2 3.3.0 Basis for a majority of the visualization, including violin distribution plots and UMAP plots 15
Rmarkdown 2.1 Report writing in html and pdf formats 16, 17
VennDiagram 1.6.20 Generate Venn diagrams 18
cluster 2.1.0 Analyze clustering similarity for optimization via silhouette plots 19

References

1 "The R Project for Statistical Computing." https://www.r-project.org/. Version 3.6.1, released 2019-07-05.

2 Stuart, Butler, et al., 2019. "Comprehensive Integration of Single-Cell Data." Cell 177 (7): 1888-1902.e21. doi: 10.1016/j.cell.2019.05.031

3 Butler, Hoffman, et al., 2018. "Integrating single-cell transcriptomic data across different conditions, technologies, and species." Nat. Biotechnol. 36: 411-420. doi: 10.1038/nbt.4096

4 Leys, Ley, et al., 2013. "Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median." J. Exp. Soc. Psychol. 49(4): 764-766. doi: 10.1016/j.jesp.2013.03.013

5 Leys, Klein, et al., 2018. "Detecting multivariate outliers: Use a robust variant of the Mahalanobis distance." J. Exp. Soc. Psychol. 74: 150-156. doi: 10.1016/j.jesp.2017.09.011

6 Delecre and Klein. 2019. "Routliers: Robust Outliers Detection." https://CRAN.R-project.org/package=Routliers.

7 Hafemeister and Satija. 2019. "Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression." Genome Biol. 20: 296. doi: 10.1186/s13059-019-1874-1

8 Farrell, Wang, et al. 2018. "Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis." Science 360: 979. doi: 10.1126/science.aar3131

9 McInnes, L. "UMAP." https://github.com/lmcinnes/umap.

10 McInnes and Healy. 2018. "UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction." ArXiv e-prints. 1802.03426.

11 Aran, Looney, et al. 2019. "Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage." Nat. Immunol. 20: 163-172. doi: 10.1038/s41590-018-0276-y.

12 Aran, Lun, et al. "Reference-Based Single-Cell RNA-Seq Annotation." https://bioconductor.org/packages/release/bioc/html/SingleR.html. doi: 10.18129/B9.bioc.SingleR

13 McGinnis, Murrow, and Gartner. 2019. "DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors." Cell Systems 8(4): 329-337.e4. doi: 10.1016/j.cels.2019.03.003

14 McGinnis, C. "DoubletFinder." https://github.com/chris-mcginnis-ucsf/DoubletFinder.

15 Wickham, H. 2016. ggplot2: Elegant graphics for data analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.

16 Allaire, Xie, et al. 2019. rmarkdown: Dynamic documents for R. R package version 2.1, https://github.com/rstudio/rmarkdown.

17 Xie, Allaire, and Grolemund. 2018. R Markdown: The Definitive Guide. Chapman and Hall/CRC, Boca Raton, FL, USA. ISBN 9781138359338, https://bookdown.org/yihui/rmarkdown.

18 Chen and Boutros. 2018. VennDiagram: Generate high-resolution Venn and Euler plots. R package version 1.6.20, https://cran.r-project.org/web/packages/VennDiagram

19 Maechler, Rouseeuw, et al. 2019. cluster: Cluster Analysis Basics and Extensions. R package version 2.1.0, https://cran.r-project.org/web/packages/cluster/


Last update: 2022-11-04